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Abstract

We develop a performance prediction model for a parallelized sparse lattice Boltzmann solver and present performance
results for simulations of flow in a variety of complex geometries. A special focus is on partitioning and memory/load
balancing strategy for geometries with a high solid fraction and/or complex topology such as porous media, fissured rocks
and geometries from medical applications. The topology of the lattice nodes representing the fluid fraction of the compu-
tational domain is mapped on a graph. Graph decomposition is performed with both multilevel recursive-bisection and
multilevel k-way schemes based on modified Kernighan–Lin and Fiduccia–Mattheyses partitioning algorithms. Perfor-
mance results and optimization strategies are presented for a variety of platforms, showing a parallel efficiency of almost
80% for the largest problem size. A good agreement between the performance model and experimental results is
demonstrated.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The lattice Boltzmann method (LBM) is a well established scheme in computational fluid dynamics (CFD)
[1–3] and has proven to be a promising and reliable solver for fluid flow simulations in complex topologies
such as porous medium, fissured rocks and geometries from medical applications [4–11]. However, for such
large and complex topologies the simulations are known to be computationally intensive. This is why there
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is an ongoing interest towards optimal LBM simulation codes and efficient parallelization strategies
[12–22]. Key to achieve an optimum in parallel performance is the correct choice of domain decomposition
method, to preserve the workload balance and to minimize the interprocessor communications.

A new LBM approach based on sparse matrix linear algebra is proposed by Schulz et al. [17]. Here the com-
putational domain is mapped on an unstructured grid, where the geometrical ordering of nodes is rearranged
and a new index list of only fluid nodes is composed. Thus each fluid node has an adjacency index list of its
neighboring fluid nodes, while the solid nodes are completely eliminated. This method requires storage of three
1D arrays: two for density distributions (as a double buffering is used) and the other one for neighbor node
indices. Next, domain decomposition has been performed for this scheme by using the METIS partitioning
library [23–25]. With this parallelized sparse LBM approach memory consumption is essentially minimized
and a highly optimized parallel performance can be achieved.

In this manuscript we extend this initial parallelized sparse LBM approach by performing detailed anal-
ysis of domain decomposition methods within the METIS library and their comparison to a 1D decompo-
sition. This is done in terms of estimation of the number of edge-cuts (to find the amount of data that needs
to be communicated between processors) and an estimation of the amount of fluid nodes per processors (to
assess the load imbalance). Further we analyze performance results in terms of parallel scalability, and find
the sources of loss of parallel efficiency, as well as predict the behavior of the solver for other geometries
and/or on other systems using a detailed performance prediction model. This model includes both details
of the parallel architecture (single node performance, point-to-point communication) and details of the
domain decomposition. The sources of loss of efficiency are estimated in terms of fractional overhead func-
tions [26].

In Section 2 we give a short overview of our sparse LB implementation, Section 3 describes the general idea
behind partitioning methods. In Section 4 we develop the performance prediction model and in Section 5 we
show the results of the parallel performance on different machine architectures and compare with the scala-
bility prediction model. In Section 6 we present our conclusions.

2. Lattice Boltzmann method

The lattice Boltzmann method is based on the discrete velocity Boltzmann equation. In our simulations we
use the lattice Bhatnagar–Gross–Krook model (LBGK) [1–3]. All parameters are in lattice units and we
assume dx = dt = 1. The lattice-BGK equation is then as follows,
fiðxþ ei; t þ 1Þ � fiðx; tÞ ¼ �
1

s
½fiðx; tÞ � f ðeqÞ

i ðx; tÞ� ð1Þ
with ei the finite set of discrete velocities, s the dimensionless relaxation parameter, fi(x, t) the density distri-
bution function and f ðeqÞ

i ðx; tÞ the equilibrium distribution defined by
f ðeqÞ
i ¼ qwi 1þ ei � u
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Here wi is a weighting factor, cs ¼ 1=
ffiffiffi
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the speed of sound, q the hydrodynamic density determined by
q ¼
Xb
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and u the macroscopic velocity determined by
qu ¼
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Here b is the number of directions. The viscosity m of the fluid is determined by
m ¼ 1
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2.1. Sparse LB implementation

The lattice Boltzmann method is said to be very efficient and easy to implement. But in most cases, a simple
full matrix implementation is used, where not only the fluid and boundary nodes, but also the solid fraction is
allocated in computer memory. Depending on the geometry, this is a considerable waste of resources, and also
of CPU-cycles due to the long loops over solid nodes in order to reach the fluid ones. In the framework of a
simple full-matrix implementation, the density distribution array for the whole bounding box is allocated in
memory. This results in 2� 19� lx� ly � lz double precision floating point REAL numbers for the D3Q19
model for a lx� ly � lz lattice [27,28].

Well-known methods from sparse matrix linear algebra were first applied to the lattice Boltzmann method
by Schulz et al. [17]. Here the storage of the density distribution is only for the fluid nodes and thus the com-
plete domain is mapped on an unstructured grid. Instead of geometrical ordering of those fluid nodes, a new
index list is composed, where each node has the index list of its neighboring fluid nodes. In this method all data
is stored in 1D arrays, where only 2� N � 19 double precision floating point REAL numbers are stored for
the density distribution (N is the number of fluid nodes) and N � 18 INTEGERs for the adjacency. This
approach allows to save a considerable amount of memory.

3. The graph partitioning algorithms

The goal of the graph partitioning algorithms is to partition large and complex graphs such that the edge-
cut is minimized (and thus the related communication overhead) while trying to keep the number of nodes on
the sub graphs as balanced as possible (thus minimizing load imbalance). In sparse LBM the computational
domain is mapped on a graph, where graph vertexes represent the fluid nodes and edges are the links connect-
ing the fluid nodes. From this graph the 1D array of fluid nodes and adjacency index list, as described in Sec-
tion 2.1, are constructed.

In previous studies, the METIS graph partitioning library was used to compute partitions from the graphs
[17,18]. However, in neither of these studies one can find information or an evident objective for the chosen
function from the multiple partitioning functions of METIS.

The METIS partitioning library contains different functions for graph and mesh partitioning. METIS
reduces the size of the original graph by collapsing vertexes and edges, partitions a smaller graph and then
uncoarsens it to construct a partition for the original graph [23–25]. In this way it produces high quality par-
titions and in addition is extremely fast. The partitioning functions are mainly based on the combination of
two algorithms: modified Kernighan–Lin and Fiduccia–Mattheyses.

The Kernighan–Lin starts with an initial bipartition of the reduced size graph such that each half
contains roughly half of the weight of the original graph and each further iteration it searches a subset
of vertices/nodes from each part of the graph, such that their swapping will create a partition with smaller
edge-cut [23]. The algorithm continues until it cannot find any two such subsets. The Kernighan–Lin algo-
rithm takes O(jEjlogjEj) time while Fiduccia–Mattheyses takes O(E) [25], where E is the number of
edge-cuts.

Fiduccia–Mattheyses can work with multiple partitions instead of two. The main achievement of this algo-
rithm is its ability of analyzing the effect of moving a single vertex. That is, it can compute the change of the
number of edge-cuts, caused by the movement of the current vertex from one partition to another, which is
called gain. The algorithm repeats by selecting the vertex with the largest gain from the larger partition
and moves it to another partition. To prevent the same vertex from moving in the same direction the algorithm
marks the vertex [23].

In METIS the Kernighan–Lin partitioning algorithm is modified by the gain computing quality of the
Fiduccia–Mattheyses algorithm. Moreover, the coarsening, partitioning and uncoarsening phases are also
enhanced with a number of improvements. Thus, depending on the demands of the fluid flow solver one
can adjust the parameters of the partitioning functions to achieve an approximate balance between maximum
load balance and minimum communication amount. Moreover, METIS allows to use a (heavily) weighted
graph, i.e., a graph with labels on nodes and/or edges, to strengthen the different features of partitions.
The weights on edges of the graph can be used to strengthen the connection between nodes thus to help to
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minimize the communication amounts. The weights on the nodes can be used to strictly preserve the load bal-
ance between partitions.

We use two different functions of the METIS partitioning library: multilevel k-way and multilevel recursive
bisectioning (RB). The difference is that the Multilevel RB approach computes a k-way partitioning by per-
forming recursive bisectioning on all phases of the multilevel graph partitioning. On the other hand, the mul-

tilevel k-way performs coarsening only once, then the coarsest graph is directly partitioned into k-parts and
finally the uncoarsening phase is also performed only once, during which a k-way partitioning refinement algo-
rithm is applied to improve the quality of the partitions [23]. For the 105 and 106 problem sizes (see Section 5)
the measured execution times for multilevel k-way partitioning are equal 0.9 and 1.3 min, respectively while for
Multilevel RB they are 2.1 and 2.5 min (both executed on a single processor of a PC cluster).

4. The performance prediction model

In order to analyze the parallel scalability of the sparse LB solver and to find the sources of loss of parallel
efficiency we develop a performance prediction model. Using this model it is also possible to predict the par-
allel performance of the solver for other geometries. Inspired by the work of Fox et al. [26], who introduced
the concept of fractional communication overheads, we write the equation for Tp(N), the execution time on p

processors for a problem containing N fluid nodes as
T pðNÞ ¼
T 1ðNÞ

p
þ T commðNÞ; ð6Þ
where Tcomm is the communication time. Note, that we assume that the communication time on each proces-
sor is the same, and the computational time on each processor can be written as T1(N)/p. This will be discussed
in more detail below.

Now we can immediately write for the parallel efficiency ep(N)
epðNÞ ¼
T 1ðNÞ

p � T pðNÞ
¼ 1

1þ fcomm

; ð7Þ
where fcomm is the fractional communication overhead defined as
fcomm ¼
p � T commðNÞ

T 1ðNÞ
: ð8Þ
We note that if we would be able to express the parallel execution time in general as
T pðNÞ ¼
T 1ðNÞ

p
þ
X

i

T iðNÞ; ð9Þ
where Ti(N) are all overheads that can be identified, the efficiency could be expressed as
epðNÞ ¼
1

1þ
P

i
fi
; ð10Þ
with fi a fractional overhead defined as
fi ¼
p � T iðNÞ

T 1ðNÞ
: ð11Þ
Next we will develop a detailed performance model for an application of size N. We assume that N discretizes
some computational domain, and that the computation on each grid point is a stencil based operation, i.e.,
only information from neighboring grid points is needed to update the grid point itself. Parallelization is
achieved by dividing the domain into p sub-domains, where each sub-domain has nj points and
N ¼
Xp

j¼1

nj: ð12Þ
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Note, that the nj are not necessarily equal to N/p, i.e., we assume load imbalance, and therefore we expect to
find some form of overhead induced by this load imbalance. Next, due to the stencil operation the amount of
communication per domain is determined by the boundary of the sub-domain, which we denote by dnj. Final-
ly, we assume that the total execution time per processor is determined by computation on the domain nj fol-
lowed by communication on the boundary dnj. This means that we exclude for now the possibility of latency
hiding (a technique that may improve the performance a lot, and that could be considered when the fractional
communication overheads become large) [29].

Now call tj the execution time on processor j and write this as a summation of computation time (tcomp) and
communication time (tcomm).
tj ¼ tcompðnjÞ þ tcommðdnjÞ ð13Þ

The execution time on p processors is now determined by the slowest processor, i.e.,
T pðNÞ ¼ maxjftjg; ð14Þ

and
T 1ðNÞ ¼ tcompðNÞ: ð15Þ

Without any further assumption we can only proceed by writing
T pðNÞ ¼
tcompðNÞ

p
þmaxjftjg �

tcompðNÞ
p

; ð16Þ
and
epðNÞ ¼
1

1þ f
; ð17Þ
with a single fractional overhead defined as
f ¼ p �maxjftjg
tcompðNÞ

� 1: ð18Þ
To proceed we need to find approximations for Tp(N). We can find an upper bound to the execution time and
use it as an approximation, allowing progress in estimating fractional overheads. We can write
T pðNÞ ¼ maxjftjg 6 maxjftcompðnjÞg þmaxjftcommðdnjÞg ð19Þ

The computational time is linear in the number of grid points. If we call scomp the time required to execute one
grid point, and realize that due to caching and memory layout of the data scomp actually depends on the num-
ber of grid points we find that
tcompðnÞ ¼ n� scompðnÞ: ð20Þ

For communication we assume a linear model for point-to-point communication, i.e., to sent m density dis-
tributions requires a time ssetup + m � ssend. ssetup is the time needed to initialize the communication and ssend

is the time needed to send one byte of information. Each processor j will sent and receive data to and from dj

other processors. This number dj depends on the details of the partitioning of the computational domain. To
each of the dj processors an amount of ejk density ditributions (with k = 1 . . . ,dj and 8 bytes per distribution) is
communicated. Moreover, the total number of density distributions that are sent to other processors is the
edge-cut ej (in bytes) which is
ej ¼
Xdj

k¼1

ejk: ð21Þ
In stencil based operations the communication is always an exchange operation, that is, an amount of data is
sent to a processor, and the same amount is received back again. We assume that this is implemented as two
synchronous blocking point-to-point communication routines. With all these definitions we can now write a
closed expression for the communication time from processor j as
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tcommðdnjÞ ¼ 2
Xdj

k¼1

ðssetup þ ejkssendÞ ¼ 2djssetup þ 2ejssend: ð22Þ
We assumed that the point-to-point communication between any pair of processors in a parallel computer has
the same speed. In Section 5 we will refine this further, by distinguishing between two types of point-to-point
communication.

From our partitioning tool METIS we can get all information, for each processor, on the number of nodes
nj, the degree of connectivity dj and the edge-cut ej.

With all these definitions we finally find
T pðNÞ ¼ nmaxsðnmaxÞ þmaxjf2djssetup þ 2ejssendg ð23Þ

By casting Eq. (23) in the form of Eq. (9) we find
T pðNÞ ¼
N
p

sðNÞ þ nmaxsðnmaxÞ �
N
p

sðNÞ þmaxjf2djssetup þ 2ejssendg ð24Þ
The last term in Eq. (24) is due to communication and gives rise to a fractional communication overhead, just
like in Eq. (8). The second and third terms are in fact a mix of two effects, namely load imbalance and the
potential change of the speed of a single processors due to the partitioning. We can separate them by writing
nmaxsðnmaxÞ �
N
p

sðNÞ ¼ nmaxðsðnmaxÞ � sðNÞÞ þ sðNÞ nmax �
N
p

� �
ð25Þ
Now the processor speed effect and load imbalance are clearly separated. The first term on the right hand side
of Eq. (25) is due to the processor speed effect, whereas the second is due to load imbalance.

This means that we find three fractional overheads:

� a fractional communication overhead
fcomm ¼
p �maxjf2djssetup þ 2ejssendg

N � sðNÞ ; ð26Þ
� a fractional load imbalance overhead
fl ¼
p � nmax

N
� 1; ð27Þ
� a fractional processor speed overhead
fs ¼
p � nmaxðsðnmaxÞ � sðNÞÞ

N � sðNÞ ¼ p � nmax

N
sðnmaxÞ
sðNÞ � 1

� �
: ð28Þ
The communication overhead and fractional load imbalance overhead are always equal or larger than zero,
giving rise to a loss of efficiency. However, this is not the case for the fractional processor speed overhead. On
cache based microprocessor the speed of the processor is typically faster for small problem sizes, when the prob-
lem fits completely in cache. If the original problem size N does not fit in cache and the decomposed problem
size nmax does, we find that s(nmax)/s(N) < 1 and therefore fs < 0, resulting in an increase of the parallel effi-
ciency. This effect is well known and appears in the literature as super linear speedup, i.e., the situation where
a measured speedup is larger than p, or equivalent, the efficiency ep > 1. Our analysis reveals that this happens
when the summation over all fractional overheads is smaller than zero, or in this case, when �fs > fcomm + fl.

Note that this is all based on the upper bound estimation of the execution time (see Eq. (19)), so we expect
to overestimate the execution time and therefore underestimate the parallel efficiency.

5. Results

We perform an extended set of experiments to assess the efficiency of the partitioning algorithms, both for
complex and simple geometries. The geometries we use are the human abdominal aorta (AA), a porous
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medium with high solid fraction (PM) and a straight square channel (SSC) (see Fig. 1). For all three geom-
etries we have chosen three different domain sizes containing 5 � 106, 105 and 5 � 104 fluid nodes respectively.
Thus in total we have nine experimental data sets. On each of these data sets we apply both the Multilevel

k-way and Multilevel RB partitioning algorithm and examine their behavior. Due to special treatment of
the inlet/outlet boundaries in the current version of our LBM solver we prefer to keep the nodes of first three
layers at the inlets and outlets completely in one partition. To achieve this we put high weights on edges of
those layers and put low weights on the rest of the edges throughout the complete graph. We compare the
amount of edge-cuts between partitions and the amount of fluid nodes per partition. We also compare these
two algorithms with 1D (operated on the original 3D domain by allowing only flat interfaces) bisection for
SSC. Finally the execution time for all nine sets of data is measured on two different platforms: a NEC
SX-8 vector machine [30] and a PC cluster [31], using from 1 up to 128 processors. In order to be able to com-
pare the results with the performance prediction model and to find the sources of loss of parallel efficiency, we
need first to evaluate the basic parameters connected with the parallel architecture (single node performance,
point-to-point communication) and with the parallel decomposition (load imbalance, edge-cuts, degree
distribution).

5.1. Basic parameters

(1) Single processor speed – We first measure tcomp(N) by running multiple simulations with a sufficient range
of data sizes on a single processor and using Eq. (20) extract scomp(N). Our experimental results (Fig. 2)
show that on the PC cluster scomp(N) is almost constant if N < 5 � 103 and N > 105 and increases in
between. Thus we have divided the complete set of measurements into three regions. For small and large
values of N, scomp(N) is assumed to be constant, and in the middle region we assume that scomp(N)
depends linearly on N. As mentioned in Section 4, scomp(N) depends on the cache size of a specific pro-
cessor. For the PC cluster the cache size is 1 Mbyte. From our computations we know that the memory
consumption per lattice node is 2 � 8 � 19 = 304 bytes (for 19 distributions). Thus if the number of lat-
tice nodes per processor is N < 3 � 103, the data will completely fit into cache.

It is well-known that vector machines such as the NEC SX-8 perform best for large data sizes. The
experimental results show a rather smooth decrease of scomp(N) as N increases. Assume that the execution
Fig. 1. (a) – Abdominal aorta, (b) – porous medium, and (c) – straight square channel.
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time depends linearly on N (e.g. a constant time to fill up the vector units, and then a time proportional
to N to produce all results), then the execution time can be written as a � N + b. Using Eq. (20) we find
scomp(N) = a + b/N, and this function we use to fit the measurements.

In Fig. 2 and 3 we have plotted scomp(N) for the LBM solver on a single processor as a function of the num-
ber of fluid nodes for PC cluster and the NEC SX-8 machine respectively for SSC. We see a good agreement
between measurements, together with the fitting results. A clear discontinuity due to the cache size for the PC
cluster at N = 3 � 103 data size can be observed. In Fig. 3 we clearly see that the bigger the problem size the
better the performance. We have fitted the experimental results to the models as described above, and the
results are summarized in Table 1.
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Table 1
Single processor performance

Platform N scomp(N) (s)

PC cluster <3 � 103 0.58 � 10�5

>105 1.42 � 10�5

Otherwise 0:58� 10�5 þ 1:42�10�5�0:58�10�5

105�3�103 � ðN � 3� 103Þ
NEC SX-8 For all data sizes 1.05 � 10�6 + 4.95 � 10�4/N
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(2) Partitioning – In Fig. 4 we show the SSC and the AA data sets partitioned using the multilevel RB and
multilevel k-way algorithms. We see that the Multilevel RB creates more sliced cuts between partitions,
while the partitions of multilevel k-way are less structured and have curved cuts. However, for both cases
the average number of fluid nodes per processor is very close to N/P. To get a better idea of the load
imbalance, in Fig. 5 we have plotted the standard deviation of the distribution of the number of fluid
nodes on processors as a function of p. From the measurements of standard deviation we hardly observe
a difference between partitionings using Multilevel RB and multilevel k-way on all geometries, except for
SSC for a very large number of partitions. This is due to the fact that Multilevel RB performs biparti-
tioning along the shortest latitude of the geometry until it reaches the minimum possible number of lay-
ers per partition and continues bipartitioning along the longitude which causes a high load imbalance for
p = 128. For complex geometries we prefer to follow the advice of Karypis et al. [23] and use Multilevel

RB for less than eight partitions while apply multilevel k-way for a larger number of partitions. More-
over, we have compared these algorithms with a 1D bisection and noted that both METIS algorithms
Fig. 4. (a) – SSC with four partitions created with the RB method, (b) – as (a) but now with the k-way method, (c) – AA, 128 partitions
created with the RB method and (d) – as (c) but now with the k-way method.
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performed better. That is, even though 1D bisectioning divides the domain into equal parts, after a cer-
tain number of partitions the deviation of number of fluid nodes per partition becomes quite high from
the average number of fluid nodes per partition.

(3) Point to point communication – This overhead depends on the specifics of the machine architectures and
the details of the edge-cut and degree of connectivity of the partitions. Moreover, most modern machines
have more than one processor per node, and therefore we must also distinguish between on-board com-
munication (with both processors on the same node) and off-board communication (between processors
on different nodes). In our case this applies only1 to the NEC SX-8 which has eight processors per node.

To measure the point-to-point communication we run a ‘‘pingpong”-wise communication with different
data sizes between two processors. Next we fit the data to a linear function and obtain ssetup and ssend. The
results are shown in Figs. 6 and 7. Moreover, in Fig. 7 we see a clear difference between communication times
for on-board and off-board measurements. Thus in our further predictions for the NEC SX-8 for p 6 8 we
take the on-board values and for p > 8 the off-board ones. We also note that for N = 1 Kbyte a discontinuity
appears. This is a buffering effect in the MPI communication routines. From the fits we extract values of ssetup

and ssend, which are shown in Table 2.
1 At the time of experiments on the PC cluster, due to technical reasons, only one processor per node was available.



Table 2
Point to point communication overhead

Platform N (bytes) a (s) b (s/bytes)

PC cluster <1024 6.34 � 10�6 4.77 � 10�9

>1024 1.38 � 10�5 1.54 � 10�9

NEC SX-8 (On board) <1024 2.15 � 10�6 1.45 � 10�10

>1024 2.90 � 10�6 6.09 � 10�11

NEC SX-8 (Off board) <1024 5.02 � 10�6 2.64 � 10�10

>1024 1.40 � 10�5 1.86 � 10�10
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Fig. 8. The average number of edge-cuts per processor for the largest data size (i.e., with N = 5 � 106) for AA (bullets), PM (stars) and
SSC (triangles) with both RB (solid lines) and k-way (dash lines). 1D bisection (dotted line) is only for SSC geometry.
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Next we consider the edge-cuts per processor obtained from the partitioning algorithms. For complex
geometries like AA or PM both the multilevel k-way and Multilevel RB behave almost similarly as shown
in Fig. 8. The standard deviations of edge-cuts are in the order of 25%. Considering the fact that the multilevel

k-way is faster but the partitions of Multilevel RB are more structured we follow the advice of Karypis et. al
[24] and use Multilevel RB if p 6 8 and the the multilevel k-way otherwise. However, in the case of SSC after
certain number of partitions (e.g., 64 in Fig. 8) the standard deviation of edge-cuts produced by Multilevel RB

is in the order of 30% while in the case of the multilevel k-way it is 40%. Thus for simple geometries like SSC we
prefer to use Multilevel RB as the communication time associated with it will be less. We also conclude that the
difference between these two partitioning functions is mainly in the number of edge-cuts rather than load
imbalance.

5.2. Performance measurements of the lattice Boltzmann application

After measuring all the parameters required for the performance model we will now present the perfor-
mance measurements for the LBM simulations. First we show detailed measurements of the total communi-
cation times and compare them to the model expressed in Eq. (22), and next we present the total execution
time of the LBM simulations as a function of N and p.

Using the point-to-point communication overheads we compute the total communication times from the
communication model and compare them with the measured ones in Figs. 9 and 10. We observe a reasonable
agreement between measurements and predictions on either machine. The maximum difference is for the SSC
case, which for the PC cluster it is about 28% while for the NEC SX-8 it is 40%. As for the AA and PM the
agreement is better, especially for the NEC SX-8. Similar behavior was observed for the cases with smaller
number of fluid nodes (data not shown).
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Fig. 9. Total communication time as a function of p on the PC cluster for the largest geometries (i.e., with N = 5 � 106). The solid lines are
the measurements and the dashed lines are model predictions from Eq. (22). The bullets are for AA, the stars for PM and the triangles for
SSC.
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Fig. 10. Total communication time as a function of p on the NEC SX-8 for the largest geometries (i.e., with N = 5 � 106).The solid lines
are the measurements and the dashed lines are model predictions from Eq. (22). The bullets are for AA, the stars for PM and the triangles
for SSC.
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Next, we measure the total execution times for all geometries with all three data sizes, and also compute the
execution times from performance model (Eq. (24)). The results shown in Figs. 11 and 12 are for the AA case.
For the other two geometries we find comparable results (data not shown). The overestimation of the execu-
tion times for the biggest data size is about 5%, while for the smallest data size for p = 128 it is about 40% on
the PC cluster and 10% on the NEC SX-8. As was mentioned in Section 4, this is due to the fact that all the
computations of prediction model are based on the upper bound estimations. We also plot in Figs. 13 and 14
the execution times in term of Lattice Updates per second (LUP/s) for all data sizes on both architectures. In
Fig. 13 we see the super linear speed-up due to the ‘‘cache effect” on the PC cluster for the smallest geometries
with 5 � 104 fluid nodes. On NEC SX-8 (Fig. 14), as was expected, the best performance we get for the largest
data sizes, of almost 75% peak performance for 128 processors.

In Figs. 15 and 16 we show the efficiencies as a function of p. Here the underestimation of the prediction
model is approximately 4%. Thus the agreement between measurements and performance model is quite high.
Also in Fig. 16 we see a steep decline of efficiencies for the medium and small data sizes. This is due to the fact
that on vector machines for such small problem sizes we see more the single processor effect (as we partition
the problem, the single processor performance goes down, see Fig. 3) and therefore a large positive fractional
processor speed overhead (Eq. (28)). For small problem sizes on the PC cluster the situation is reversed. Here
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Fig. 11. Execution time as a function of p on the PC cluster for AA for all three problem sizes. The solid lines are measurements and
dashed lines are predictions from the performance model. The bullets are for N = 5 � 106, the stars for N = 105 and the triangles are for
N = 5 � 104.
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Fig. 12. Execution time as a function of p on the NEC SX-8 vector machines for AA for all three problem sizes. The solid lines are
measurements and dashed lines are predictions from the performance model. The bullets are for N = 5 � 106, the stars for N = 105 and the
triangles are for N = 5 � 104.
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Fig. 13. Lattice updates per second as a function of p on the PC cluster for N = 5 � 106 (solid lines), N = 105 (dashed lines) and
N = 5 � 104 (dotted lines). Bullets are AA, starts are PM and triangles are SSC. The dotted line indicates the ideal peak performance.
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Fig. 14. Lattice Updates per second as a function of p on the NEC SX8 machines for N = 5 � 106 (solid lines), N = 105 (dashed lines) and
N = 5 � 104 (dotted lines). The bullets are AA, the starts are PM and the triangles are SSC. The dotted line indicates the ideal peak
performance.
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Fig. 15. Efficiencies as a function of p on the PC cluster. The solid lines are measurements and dashed lines are predictions from the
performance model. The bullets are for N = 5 � 106, the stars for N = 105 and the triangles are for N = 5 � 104.
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the fractional processor speed overhead is negative due to the caching effect, and we observe efficiencies much
larger than one (see Fig. 15).
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Fig. 17. (a) – Fractional overheads for the largest data size (e.g., N = 5 � 106). Bullets are AA, stars are PM and triangles are SSC. The
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and the PC cluster respectively.
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In Fig. 17 we have plotted fractional communication and fractional load imbalance overheads (Eqs. (26)
and (27)) as a function of p. From the plot it is clear that for large p the loss of the efficiency due to the load
imbalance can be as large as 18%, while the loss due to communication overhead is about 7% on the NEC SX-
8 and 20% on the PC cluster. For a small number of processors the fractional load imbalance overhead is neg-
ligible as compared to fractional communication overhead. Thus from Fig. 17 we conclude that for a small
number of processors the best way to improve the efficiency is the implementation of latency hiding [29] to
decrease the communication overhead. For a large number of processors we propose to use a better partition-
ing algorithm to improve the load balance. By comparing the fractional load imbalance overheads as a func-
tion of number of fluid nodes we also observed that the bigger the data size the easier it is to achieve good load
balance (data not shown). Therefore we can try to extrapolate our results to much larger data sizes. If we
assume that the single processor speed overhead for large data sizes is zero, the point-to-point communication
overhead decreases as 1/N2/3 and for a 108 data size geometry we decrease the load imbalance by 10% we can
achieve almost 95% peak performance.

All these comparisons confirm that the performance model has a good accuracy and it is eligible for pre-
dicting the performance for any size/type of geometry, if one knows the estimated fractional overheads.

6. Conclusions

In this paper we have developed a performance prediction model and tested it by comparing the computed
performance results with time complexity measurements of our parallel sparse lattice Boltzmann solver. In
order to interpret the results, we defined three sources of parallel efficiency loss, i.e., fractional processor speed
overhead, fractional communication overhead and fractional load imbalance overhead and measured them
for all nine cases and two architecturally different supercomputers: a NEC SX-8 vector machine and a PC
cluster.

For the three different geometries with three different data sizes we have preformed a graph partitioning by
using two different functions of the METIS graph partitioning library. We compared the partitioning results
and conclude that with simple geometries is it better to use the multilevel RB method rather than multilevel k-
way, while for complex ones the combination of both will give optimal solution [23].

The measurements show that for the largest data sizes we obtain almost 75% peak performance on NEC
SX-8 vector machine. Moreover with the help of the performance model we estimate that the efficiency on the
NEC SX-8 can be improved if one chooses more robust partitioning algorithms as the efficiency loss for large
p is mostly due to load imbalance. The comparison of these measurements with prediction model gives us 5%
error, which shows that the developed model can be used for scalability prediction of parallel performance for
any geometries.
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[21] G. Wellein, T. Zeiser, P. Lammers, U. Küster, Towards optimal performance for lattice Boltzmann applications on terascale
computers, in: A. Deane, G. Brenner, A. Ecer, et al. (Eds.), Parallel Computational Fluid Dynamics: Theory and Applications,
Proceedings of the 2005 International Conference on Parallel Computational Fluid Dynamics, May 24–27, College Park, MD, USA,
Elsevier, Amsterdam, 2006, pp. 31–40.

[22] C. Pan, J. Prins, C.T. Miller, A high-performance lattice Boltzmann implementation to model flow in porous media, Computer
Physics Communication 158 (2) (2004) 89.

[23] George Karypis, Vipin Kumar, Multilevel k-way partitioning scheme for irregular graphs, Journal of Parallel and Distributed
Computing 481 (1) (1998) 96–129.



L. Axner et al. / Journal of Computational Physics 227 (2008) 4895–4911 4911
[24] Amine Abou-Rjeili, George Karypis, Multilevel algorithms for partitioning power-law graphs, in: IEEE International Parallel &
Distributed Processing Symposium (IPDPS), vol. 10, 2006.

[25] George Karypis, Vipin Kumar. Multilevel graph partitioning schemes, in: International Conference on Parallel Processing, vol. 3,
1995, p. 113–122.

[26] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Solman, D. Walker, Solving Problems on Concurent Processors, Prentice-Hall Int., Inc.,
1988.

[27] J. Bernsdorf, S.E. Harrison, S.M. Smith, P.V. Lawford, D.R. Hose, High performance computing on vector systems 2006, in:
Proceedings of the High Performance Computing Center Stuttgart, March, 2006.

[28] G. Wellein, G. Hager, T. Zeiser, S. Donath, On the single processor performance of simple lattice Boltzmann kernels, Computers and
Fluids 35 (8–9) (2006) 910–919.

[29] J.B. White III, S.W. Bova, Where’s the overlap? An analysis of popular MPI implementations, in: MPIDC’99: Proceedings of the
Message Passing Interface Developer’s and User’s Conference 1999, March 10–12, Atlanta, 1999.

[30] http://www.hpce.nec.com/.
[31] http://www.sara.nl/userinfo/lisa/description/index.html/.

http://www.hpce.nec.com/
http://www.sara.nl/userinfo/lisa/description/index.html/

	Performance evaluation of a parallel sparse lattice Boltzmann solver
	Introduction
	Lattice Boltzmann method
	Sparse LB implementation

	The graph partitioning algorithms
	The performance prediction model
	Results
	Basic parameters
	Performance measurements of the lattice Boltzmann application

	Conclusions
	Acknowledgements
	References


